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The inverse scatter problem determines the characteristics of the perturbations of the initial conditions, 

design parameters, and the wind velocity from given characteristics of the scatter of the point of impact of 

an unguided missile. A deterministic and a probabilistic formulation of the problem are considered. Some 

properties of its solutions are noted and a method of computing them is proposed. 

ONE OF the main problems in the exterior ballistics of multiple launches of unguided missiles is 
calculating the scatter of the point of impact of the missile from the known characteristics of the 
perturbations of the initial conditions, design parameters and the wind velocity. Analytical methods 
have been developed for solving this problem [l]; computer-based linearization and Monte Carlo 
methods are also available [2]. This paper examines the inverse of the problem previously 
considered, namely, the problem of determining the maximum level of perturbations in the initial 
conditions, design parameters and the wind velocity that ensures a given scatter of the points of 
impact for any launching conditions. 

1. PERTURBATIONS OF THE DESIGN PARAMETERS AND WIND VELOCITY 

We will assume that the scatter of the points of impact of the missile is governed by perturbations 
of the design parameters and by perturbations of the wind velocity and initial conditions at the 
instant of lift-off. After separation from the launching guide, the missile is treated as an 
undeformable rigid body that carries a solid fuel charge and moves in the uniform gravitational field 
acted upon by a constant horizontal wind, the jet propulsion force, the reactive Coriolis and 
aerodynamic forces, and the corresponding momenta. The perturbed motion of the perturbed 
missile along the launching guide is described using the simplest model of the missile as a material 
point of variable mass that moves rectilinearly under the action of a propulsive force. 

The unperturbed missile has both mass and aerodynamic symmetry about the longitudinal axis; 
the propulsive force also acts along this axis. The variables in the unperturbed motion of the 
unperturbed missile will be denoted by a prime. Each unperturbed motion is uniquely defined by 
the vector of unperturbed launching conditions a’ = (h’, 06, u’, $,I), where h’ is the launcher 
altitude above sea level, @, is the launching angle, U’ is the magnitude of the wind velocity u’, and I& 
is the angle between u’ and the Ox axis (see below). 

In the perturbed missile, the distribution of the mass and the propulsive force is assumed to be 
slightly asymmetric; aerodynamic asymmetry is ignored. We also allow for small perturbations of all 
design parameters occurring in the equations of motion of the axisymmetric missile. Let t, be the 
time when the perturbed missile starts moving along the launch guide, to the time when the missile 
separates from the guide, and r the end of the section under power. The system of coordinates 
C&y2z2 is rigidly fixed to the missile shell; the origin of this system is the projection of the point C, 
(the centre of mass of the missile under power) on the aerodynamic axis of symmetry, with the cx2 
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axis pointing atong the aerodynamic axis of symmetry towards the nose. ‘The propulsive force P(,t) is 
characterized by its magnitude P(r) and the unit vector i)(t) = P(t)lP(t). The moment of the 
propelling force about the centre of mass is defined by specifying the point of intersection K(r) 01 
the line of action of the force with the bottom section plane. Using the notion of effective length ~,rr 
the ~~~nchin~ guide, the actual dependences P’(r) and P(t) are ~~~r~xirn~te~~ by rectangular ones, 
which are characterized by three parameters: the mass-flow rate after separation, the effective 
discharge rate and the propellant mass, The times I’+ and t, thus deviate from the actual times. Since 
the maSS-fIOw rate is assumed to be constant. the missile mass is a fincar function of f in the rime 
interval It*, 7.1. 

All other design ~~rarneters that e~~l~~itly depend on i in this time interval {the coordinates of thv 
centre of mass, the components of the central inertia tensor, the c~~~~rdinates of the point K, and the 
components of the vector v in the system C$Y~_V~Z~) are approximated by functions linear in f md 
are therefore completely characterized by their values at the instants of time Z, and 7. A change of I ,. 
keeping all other conditions constant does not alter the impact point, and we accordingly take 
I,, = tg = 0. The perturbations of the exterior missile geometry are allowed for by perturbing the 
a~r~~~narnic coefficients. They are characterized by small c~~?s~~~r values: pertnrbati~~ns of the 
~~~rr~s~o~ding “shape factors”. 

Wind vefocity perturbations are considered only on the ~r~pL~isi~~~~ section of the flight trajectory 
where their effect on the impact point scatter is the most significant,. 

Dehning in the usual way the variables x, y, z, u, 8, 9.13, y* T, EY, #3, y that describe the missile 
dynamics, we will combine them into a phase vector W of the system of differential equations of the 
perturbed motion of a perturbed missile after separation from the launching guide. Here x, y, I are 
the coordinates of the centre of mass of the missile in the starting system of coordinates OXJJZ: the 
Ox axis points horizontally in the firing direction, the CQ axis points vertically upwards: 11 is the 
~n~~~itud~ of the vetocity vector Y of the centre of mass, 01 is the an& between the C3x- axis and the 
projection of v onto the On_v plane, and $ is the angle between the vector Y and the f&y plane. The 
angles ty and /3 are defined in the same way as B and +!J and describe the direction of the Ion~ittidin~~l 
axis C!!X~ in the semi-velocity system of ~oordin~~tes C$X~~J+,Z(~. The semi-attached system of 

coordinates C_$X~~~ zt is transformed into C$xzy2z2 by rotating it thr~~~gh the angle y about the axis 
f;:‘,‘xi a We shall denote byp, q, I’ the ~raje~tions of the absolute angular velocity vector of the missile 
on the semi-attached axes, We shall assume that the initial perturbations M,,, tfio, tfo, Q, CQ, & at 
the time of separation from the launching guide to and the perturbations of the design parameter-s 
and the wind velocity introduced above are independent and small. If the rotational velocity p and 
the restoring moment coefficient are sufficiently large during the entire flight and the wind velocity is 
s~f~ci~~tly small, then if there are no resonance effects $$ ~1, r, cti and /3 will be small; the 
perturbations of these variables and the other components trf the phase vector W fwith the 
exception of hIV i2 = dy) will also be small in this case. 

Thus, ignoring terms of second and higher order smallness in the equations of motion. we obtain a 
linear (in AW,. . _ _ _ 19W, 1 ) ~~~~-homogeneous system of differential equations of the perturbed 
motion of the perturbed missite that defines A W = W - W ’ for d 3 4). The Coefficients of this system 

depend on the unreturned motion of the un~rtur~ed missile. 
Same of the design parameter perturbations do not occur in this system, i.e. they are unimportant 

within the framework of the linearized theory. The wind velocity perturbations, the initial 
perturbations, and the remaining design parameter perturbations form the vector 
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Here AU, and Au, are the projections of the wind velocity perturbation vector onto the Ox and Oy 
axes. We will denote by v and K with the subscripts y and z the projections on the cyZ, C$.z, axes of 
the vector v and the unit vector K pointing in the direction of the principal central axis of inertia with 
the least moment of inertia. We will denote by y and z with the subscripts K and C the 
corresponding coordinates of the point K and the centre of mass in the system C$~y~z~. The 
subscripts *, 0 and I- denote the values of the variables at instants of time t,, to, and T. Ay and Au, 
are the perturbations of the mass-flow rate and the effective discharge rate, Am, and Amz are the 
perturbations of the propellant mass and the missile mass on the burnout section of the flight 
trajectory, and eX is the perturbation of the shape factor. The system also explicitly contains 
AW, = Ap. The linearized system of the equations of perturbed motion of a perturbed missile thus 
has the form 

(Aw)‘=B(r, a’)Aw +b (;) (t,a’)E(~)fb(:)(t,a’)f(;Z) t 

+i % [b 
j=2 s=1 

( 9 s, (t, a’) cos 7 +b@f)(t, a’)sir+? + (2.2) 

+ bp (t, a’) A.P(t, u’, E) + b, (r, a’) Am (t, a’, e) I- bI I (t, u’)el 8 

Aw = col(Ax, Ay, AZ, Au, AtI, A$, Aq, Ar, Acx, A@) 

The matrix B(t, a’) is continuous, the column vectors b(t, a’) have discontinuities at t = T’, the 
functions AP(t, u’, E), Am(t, a’, E) are piecewise-continuous in t and are expressed in terms of er4, 
. . .) e17, i.e. in terms of Ap, Au,, Amr, Amz, and the dependence of y on t is defined by the 
equation y’ = p. At the instant of separation to = t’,, + At,, we have Aw(ta) = (0, 0, 0, Au,, A@, , t/to, 
qo, ro , a0 , PO) are arbitrarily small perturbations and Au0 and At0 are determined from the equations 
of motion along the launching guide in the form of linear homogeneous functions of the 
perturbations e14, . . . , q7. 

3. PERTURBATIONS OF THE IMPACT POINT COORDINATES 

If the dependence of y(t) is known, the solution Aw(r) of system (2.2) is expressed by a 
well-known formula in terms of the fundamental matrix Q(t) of the corresponding homogeneous 
system, the initial values, and the non-homogeneous terms. We thus obtain an expression for Aw at 
the impact time T. This expression includes integrals over [to, T] of products of functions of the 
form (a( 7’) @-r(t) b (t) by cos y(t) and sin y(t). The components of these vector-valued functions are 
similar to the function R [s, , o-((t)] in [ 1, Sec. 531. They can take large values and vary rapidly only on 
the critical section of the flight trajectory immediately after lift-off, while on the rest of the trajectory 
these functions take relatively small values and vary slowly. Thus, if the angular velocity of rotation 
p is sufficiently large, it is the critical section that makes the main contribution to these integrals, 
because on the rest of the trajectory the integrands describe nearly harmonic high-frequency 
oscillations of small amplitude with a slowly varying frequency and amplitude. The integrals of these 
functions are therefore negligibly small. 

From the equation y’ = p’ + Ap we see that on the critical section, because of its short length and 
the condition r(to) = I’ = 0 (this condition is ensured by the choice of the cy2 axis in the 
system of C$~y~zz), we have r(t) = y’(t - At)with a small error and the relevant integrals can be 
taken approximately. Replacing to and T by t& and T’ in the expression for Aw( T), we obtain in the 
linear approximation the following expression for the perturbations Aw,(T) of the coordinates 
wr = X, w2 =y,wa=zattheimpacttimeT=T’+AT 

AW,(T)= Y (M($~E(/)tMC:)E(f))+ !I! MkjE/(k=1,2,3) 
j= 1 j=12 

(3.1) 

Here l i’l’, ef*) (i = 1, . . . , 11) and ej (i = 12, . . . , 18) are arbitrarily small perturbations (2.1) and 
the constant coefficients ML;‘, M&F’, Mkj depend on the vector of launching conditions Q’ and are 
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obtained by numerical integration of the equations of unperturbed motion of an unperturbed 
missile. 

Setting k = 2 in the approximate equalities 

wk (r) = d 6”) + nwk (0 = w; (T’) +fk (w’(i’-‘)) AT t Awk (n (k = 1.2.3) (3.2) 

where fk are the right-hand sides of the first three equations of unperturbed motion (IV;, )’ = fk (IV’ ). 
and noting that w*(T) = w; (T’) = 0 from the definition of T, T’, we obtain AT = -Aw?(T)I 
fz(w’(T’)). Substituting this expression for AT and expressions (3.1) for Awk(T) into equalities 
(3.2) for k = 1, 3, we obtain a formula of the form (3.1) for the perturbations 
Awk = wk (T) - wb (T’) of the coordinates of the impact point x. z. 

In what follows, the set of all possible unperturbed launching conditions for missiles of this type is 
approximated by the finite set of vectors u; (I = 1. . m). Then denoting by N@ , IV,@, Ri,, the 
coefficients of the formula for Awk evaluated at a’ = a;, we find the perturbations of the coordinates 
of the impact point x and z given the launching conditions u; 

II 

Aw kl = 
2 (N,$)f(f) tN$$)E(jZQ t t” NkliEj(k= 1.3) 

j= I j=, 2 -- 

4. THE DIRECT DETERMINISTIC SCATTER PROBLEM (DDSP) 

The set of perturbations (2.1) consists of the components of two-dimensional perturbations 
Ej = ($l), ei’2’ )(j=l,...,ll) d an one-dimensional perturbations Ej (j = 12, . . , 18). The tolerance 
dj of the perturbation Ei (j = 1, . , 18) is the maximum value of / Ejl that occurs in the 
manufacturing and launching of a missile of the given type. The tolerance vector d = (d, , . . , dlx) 
is considered as a point in the Euclidean space E 18. The quantities 1 Ej 1 = [(E,“))* + (~1(*))*]“* (j = 1. 

. “7 11) have an obvious physical meaning: 1 el I is the magnitude of the wind velocity perturbations; 
j e2 / and I e3 / are the angles that the thrust vector and the first principal axis of inertia make with the 
longitudinal axis at time t, , I l 6 I and 1 l 7 1 are the corresponding angles at time 7, I e4 i and j es I are the 
distances from the point K and the centre of mass to the longitudinal axis at time t,, 1 l s / and / e9 / are 
the corresponding distances at time 7, I q(, I is the magnitude of the tranverse angular velocity, and 
I l ll / is the angle of attack at time to. 

The DDSP involves determining Dk (k = 1,3)-the maximum magnitudes of the perturbations of 
the point of impact coordinates X, z for given tolerances and launching conditions. According to 
(3.3) and the definition of d, the maximum magnitude of the perturbations of the point of impact 
coordinates X, z given the launching conditions a; is Dkl = n,,d, where nk[ is a vector with the 
components 

and nkld is the scalar product of nk[ andd.Thus,Dk(k=l,3)iSthelargestofDkl(f=l,....m). 

5 THE INVERSE DETERMINISTIC SCATTER PROBLEM (IDSP) 

Let L be the set of index pairs k = 1, 3, I = 1, . . , m such that nkl#O. The perturbation Ej is 
unimportant when nkQ = 0 for all (k, I) E L. The IDSP involves finding the tolerance vector such 
thatforallE= 1,. . ., m the perturbations of the point of impact coordinates x, z do not exceed in 
magnitude the given values D,>O (k = 1, 3), i.e. 

nk,d <Dk 1 (k, 1) E L (5.1) 

To avoid solutions with negative or very small tolerances dj, whose realization is impossible or 
impracticable, we introduce the conditions 
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d? do,do=(d,,....,doIs) (5.2) 

where doi 2 0 are the minimum realizable dj . Here and in what follows d ’ 2 d” when dj’ 2 d,!’ (j = 1, 
. . .) IS), and d’> d”,whend/%dy(j=l,..., 18), and d: > d,!’ for at least one j. 

If the vectors d’ and d” satisfy conditions (5.1) and (5.2) while some components of d’ are greater 
than and some are less than the corresponding components of d”, then in the absence of additional 
information there is no reason to prefer one vector to the other. If, however, d’ ad”, then d’ is 
preferable, because in this case for some perturbations Ej the tolerances are greater than with drr and 
for other perturbations the tolerances are equal. 

We thus obtain the following formulation of the IDSP: find the tolerance vector d that satisfies 
inequalities (5.1) and (5.2) and such that there is no other vector d’ >d that satisfies these 
inequalities. The IDSP thus reduces to finding the pareto-optimal solutions [3] of the problem of 
maximizing the function f(d) ==d on the polyhedron X-the intersection of the unbounded convex 
polyhedra M and K defined by inequalities (5.1) and (5.2). The polyhedron K is the positive 
coordinate orthant d 20 shifted by do, It is thus a cone with its apex at do. The part of it4 included in 
the orthant d 2 0 is bounded. 

6. THE PROPERTIES OF IDSP SOLUTIONS AND THE METHOD OF SOLUTION 

The n-face of the polyhedron M is the set r, (ki ,11, . . . , k, , 1,) of points dE M contained in the 
intersection of PI hyperplanes nkld = Dk, (k, Z)E {(k,, II), . + . , (k,, I,)} with pairwise distinct 
(k,,f,)EL(s=l,..., R) and not contained in the intersection of any it + 1 such hyperplanes. The 
interior of ii4 is treated as a O-face lYO. The dimension of a non-empty n-face is 18 - n or less than 
18 - IZ (when some of the defining hyperplanes are identical). Each point d E M is contained only in 
one n-face lYn(kI, 11, . . . , k,, la), which we denote by T(d); we denote by L(d) the set (k,, II), . . . , 
(kn, 1,) of index pairs (k, I) for which nkld = Dk. With the exception of the vertices of M, all 
non-empty n-faces are open sets. 

The n-face T(d) is said to be parallel to the vector e if together with any segment d’ + he 
(Al <A < h2) parallel to e this n-face contains the point d ‘. The set of indices j of the unit basis 
vectors e(j) (j = 1 ’ -, 18) to which the n-face I’(d) is parallel will be denoted by f(d); it consists of 
the indices j of cdrnmon zero components of the vectors n kf, (k,I)EL(d). Sincenk,>O, (k,l)EL, 
the set E(d) of the vectors e>O to which T(d) is parallel consists of vectors with the components 
ej = 0 (j&f(d)), e$O (jEf(d)) related by the constraint ei + . . . + e18 = 1. The last constraint is 
imposed to ensure non-collinearity of any distinct vectors from E(d). Since the O-face r0 is parailel 
to all e(j) (j + 1 . ., 18), E0 is the set of vectors e with the components ej>O, el + . . . + e18 = 1. 

Let d EX. The set of points d’ 3 d (points that are “better” than d) is a cone with the punctured 
apex d, which is included in K and consists of the rays d + Ae (A > 0) pointing in the directions e 5 0. 
If E(d) is empty, then d is a solution of IDSP, because all such rays lie outside M. Indeed, in this 
case for any e 20 a vector &I, (k,I)EL(d), such that nkle>O and thus nk,(d-t- 
Ae) = Dk + Ankle> Dk exists. Assume that E(d) is non-empty. If the vector eG=O is not contained in 
E(d), then the ray d + Ae (A >O) again is not contained in M. If e E E(d), then the ray d + he (A > 0) 
intersects the boundary of T(d) for A > 0 given by 

For A > A(d, e) the points of this ray are outside M, and for 0 <A < A(d, e) they are contained in 
I’(d), but then they are all “worse” than the point d + A(d, e)e. This leads to two assertions. 

1. The set P of solutions of the IDSP is non-empty only when d,,E M (i.e. n,,d,< Dk, (k, l) E L) 
and it is the intersection of the cone K with all n-faces that are not parallel to any e(j) 
(j=1,...,18). 

2. Any solution of the IDSP can be computed as an element of the sequence dcaj, d(,, , . . . defined 
by the equalities 



+I) =d~;qsil} =d(,) ‘w&T “(sjfe(,)* qs)~w(S)~ fh. 1 ) 

for which E(&) is empty. The index s* of this element is not greater than the dimensions of I‘(&,). 
Setting h(&_ &f = 0 for ty(‘) GC E(f&), we consider the point of intersection ~1”‘“) = 

d<j -i- h(d() , d”) di) . of the boundary I’fd,,) with the ray C& c he(‘) (h 30). Its ith coordinate is 
d? = & + A(&, e(j)) and the remaining coordinates are L& (j+ 6). Assume that a vector do X exists 
for which c&>dF, and represent it as the sum d = d’ -t d”, where A’ = d,, + A’c(~). and d” is 
orthogonal to the ray do + Aefi) (A 2 0). Since d,’ = d, > dy, we have h’ > A(do , d’)), and consequently 
d’ tiE M, and since d”20, also d’ -I- d”E M. We thus have the following assertion. 

3. The tolerance dj (i= 1, . . L, 38) reaches its maximum value when the other tolerances cioj 
(j Z i) are minimal and this maximum value is d,” = d,,i + h (d,, , 6’)). 

Suppose that the boundary of M in the three-dimensional case is formed by four planes, one of 
which is parallel to ecri and P@), and the point do = AC1 is contained inside M, so that X is the 
heptagon shown in Fig. 1. Then the set of solutions P is the surface formed by the three polygons 
shown by the thick lines. The maximum tolerance &;I fi = I_ 2.3) is equal to the ith coordinate of the 
point d 6~ = Ai. Any solution (ZEP is at worst the second term dc2) of the sequence (6. I). If 
do = A3 ) then P is the polygonal line B1, . . , B4. 

The components e(,r)j 30, jeJ((cl;,,) of the vector eCs) E E(dt,Tj) add up to I and therefore 
0 G e(s)j 6 1. The closer eoji in (6.1) is to 1, the greater is the increment of the tolerance dj on passing 

from d(S) to d(,+ I) and the smaller are the increments of the other tolerances. We therefore first tind 
the maximum tolerances d/) (j = 1, . . . , 18) and choose the largest components of etot as those that 
correspond to hard to realize d$,. Then dtl, is computed. The person solving the IDSP estimates the 
tolerance vector dfl) based on his view of the difficulty of its realization and other unformalizetl 
criteria. If the vector d,,, is “satisfactory“, it is accepted as a solution (when J(d{it,> is empty) or ix 
“improved” by formulae (6.1) (when J(d(t,) . IS non-ernpty~~ Otherwise, the vector ecoi is updated. 

If we need a solution of the IDSP in which some of the tolerances take specified values, the 
remaining tolerances can be computed by the proposed method setting d,, equal to the prescribed 
tolerances dj and taking e(.+ = 0 for the corresponding indices J. 

7. THE DIRECT PROBABILISTIC SCATTER PROBLEM (DPSP) 

Assume that each perturbation in (2.1) is a random variable independent of the other 
perturbations and has a normal distribution with mean 0. Each pair of perturbations E,“‘, ~1’~’ (’ :I 
1 3 ..I, Z 1) is bivariate normal. Then the distribution of the perturbations (2.1) is completely 
characterized by the vector of standard deviations e = (cut _ . . _ , o-~s> or the vector of variances 
d = (d, , . . _ . d,,),wheredj=r$forj= 1.. . ..lfisthevarianceof~lf~)and~~“andforj= 12.. .x 
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18 it is the variance of fj. From (3.3) we thus have that for each I = I, . . . , m any linear combination 
of Awn, AwsI with constant coefficients that are not simultaneously zero has a univariate normal 
distribution. This means that the perturbations Aw n, Awgl of the point of impact coordinates X, z for 
a fixed al follow a bivariate normal distribution with probability density 

P(Aw,,, Aw~~)=(27~&~~~~~1 - P:>-’ exp E-(Aw:G?,- 

-2p,Aw!,Aw31/2:11~31+Aw231)/~~1/2(1 --+:)I 

where Ckl = u%, are the standard deviations of Aw,[ (k = 1, 31, pt = CflClfCaI is the correlation 
coefficient between them, The variances DkJ of the variables and their covariance C, are obtained by 
(3.3) from the formulae 

Dk{ = n&, c, = nld 

where &I, nl are vectors with the components 

(7.I) 

Instead of standard deviations, we may also consider the likely deviations Ekf=0.6745& of the 
perturbations Awkl (k = 1, 3). 

If at the point of impact we change from the coordinates Aw 31, Awlf to a right-hand system of 
coordinates with the axes Aw$, AwPq directed, respectively, along the semiminor and semimajor 
axes of the equal probability ellipse, then the correlation coefficient between Ai&, A& is zero and 
their variances are given by 

DPI=~[olr*~~l-(-l)(k+1)/2~(D1(-Dj1)2 +4c12 @=I.31 

The angle rpf through which the axes Aw 3[, Awn are rotated to coincide with Aw$, AwFl is equal, 
apart from 9rs (s = 0, + 1, -t-2, . . .), to rpll for Dir> D31, cp 21, for Dll< D3[, p3[ for Di, = D3[ where 
q1f = 0.5arctg2C&Du- Dll), (p21= q~i+ ~f2, (p3( = -0.25nsgnCf (CffO). 

The missile scatter for a fixed ai is thus entirely characterized by one of the pairs of variables Dk., 
Of&, Ii&, Z&, Ekt, Ezi (k = 1,3) with one of the variables Cl, pt+ 92. To obtain a suf~ciently 
complete picture of the scatter of a particular missile, we need to determine the maxima of the 
corresponding probabilistic characteristics over all E = 1, , . . I m. 

8. THE INVERSE PROBABILISTIC SCATTER PROBLEM (IPSP) 

As the main missile scatter characteristics the maximum (over all launching conditions) standard 
range and lateral deviations Xi and & or the maximum likely range and lateral deviations El = LR 
and E3 = LL of the point of impact coordinates are often used. We will thus consider the IPSP as the 
problem of finding the variance vector $ of the perturbations (2.1) such that for all I = I, . . . , m the 
standard or likely range and lateral deviations do not exceed Z$ or Ek jk = 1,3f. Then, by (7.11, we 
have n&d Dk, jk, f) E L where DI, = &+= (E~~O.6~45~~ are given values, and f, is the set of index 
pairsk=I,3,and~=l,...,~forwhi~h~~~#O~ 

To avoid solutions with negative or very small variances dj, we impose the condition d2do, 
where do 2 0 is the minimum variance vector. Thus, the vector d satisfies conditions that differ from 
(5.1) and (5.2) only by the definition of &l. Among such vectors, the solutions of the IPSP are those 
d for which no d’ 2 d exist. Then analogues of assertions l-3 hold for IPSP. 

Instead of dj or ui we can use the quantiles 1 Ej 10.997, which may be called the tolerances Ai at the 
0.3% rejection level. Seeing that two-dimensional perturbations of 1 Ej12/$ are distributed as g(2), 
We have Afz3.6aj (j= 1, . . . , ll), AjG3cj(i= 12,. . . ,18). 
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s. EXAMPLE 

Missile M2 with a range of 100 km differs from missile Ml only in the design of the tait, that approximatcl) 
halves the restoring moment coeffGent and leads to some changes in the other characteristics. Table 1 gives the 
values of e, = eCltjj chosen after a number of trials and the corresponding values of A, = A,, li calculated in the 
first step of the process (6.1) with c&, = 0, LR = LL = 500m, and also A;‘” The perturbations t, ( j = 3.7) proved 
to be unimportant, and Ai (j = 2,4, 5,6,&g. IO, II) for M2 are almost haif those for Ml. If we take for MZ the 
same tolerances Aj as for Ml, then as we see from the solution of the IPSP its LR and LL are a factor of 1 .H 
greater than for MI. If with the tolerances of MI we increase the rotational velocity of M2 by a factor of 2. I. 
then LR = LL = 330 m. 
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